
Efficient quantum circuit compression using Reinforcement Learning

Noah Berthusen1, 2

1Ames Laboratory, Ames, Iowa 50011, USA
2Department of Electrical and Computer Engineering,

Iowa State University, Ames, Iowa 50011, USA.
(Dated: November 16, 2021)

Computations by the current generation of noisy intermediate scale quantum (NISQ) computers
are often plagued by errors such as decoherence and cross talk. Such errors severely limit the
depth of NISQ quantum circuits, yet many quantum algorithms that show promise of a quantum
speedup require deep circuits and prolonged coherence times. In this work, we propose leveraging
Reinforcement Learning (RL) to intelligently build quantum circuits that can recreate given target
states, given no information about the circuit used to construct them. The RL agent learns about
the hidden system by receiving rewards based on local observables, calculated using the target state,
and the fidelity of the final state. By constraining the depth of the circuits built by the agent, we
hypothesize that this approach allows us to compress the depth of quantum circuits necessary to
create the target state. One important application of our method is dynamic quantum simulation,
where the target state is a time-evolved state using a given Hamiltonian and a Trotterized quantum
circuit. Our method promises quantum simulations out to longer final times than are currently
feasible on NISQ devices.

I. INTRODUCTION

While the advent of fault tolerant quantum comput-
ers seems to offer exponential speedups in some compu-
tational problems, a sufficiently effective error correct-
ing scheme capable of mitigating the numerous sources
of error on current devices has not yet been developed.
Nonetheless, recent research is aiming to find speedups
possible on Noisy Intermediate-Scale Quantum (NISQ)
computers in the domain of quantum simulation of physics
and chemistry [1]. For correlated electron materials, the
exponential growth of the Hilbert space means classical
simulations become intractable at only tens of qubits.
Indeed, Richard Feynman famously quoted “Nature isn’t
classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical...”

Numerous algorithms have been proposed for simulat-
ing electronic structure hamiltonians including the phase
estimation algorithm (PEA) [2] and the variational quan-
tum eigensolver (VQE) [3]. Due to the very long circuits
and coherence times required by PEA, VQE has recently
become the defacto method for doing digital quantum
simulation. VQE is a hybrid quantum-classical algorithm
where a quantum subroutine is run inside of a classical
optimization loop. On the quantum computer, a parame-

terized ansatz |Ψ(U(~θ)〉 is prepared and the expectation
value measured. The classical computer then alters the

parameters ~θ to attempt to minimize some loss function.
Often, the ground state energy E0 of a hamiltonian is the
goal, although variational methods have also been devel-
oped to target excited states Ei, i > 0 or time-evolved
states e−iHt|Ψ0〉 [4].

In the VQE algorithm, the quality of the simulation
mainly depends on the choice of ansatz. Several options
have been investigated, including static ansätze [5],[6] and
adaptive methods [7],[8]. One work of specific interest for
this paper utilizes Reinforcement Learning (RL) as the

machinery behind classical optimization [9]. In that work,
the structure of the ansatz circuit was fixed beforehand
and only the parameters were altered. We make the
distinction that in this work, the ansatz circuit is not
predetermined; instead, it is constructed by the RL agent
using a given set of gates. Much like the adaptive VQE
techniques, dynamically building an ansatz for a given
problem has the possibility to minimize useless/redundant
features in the circuit and decrease circuit depth overall.

For the application of simulating the time-evolution of
a quantum system, the Trotter formula provides a way
to approximate exp(−iHjt) for each non-commuting part
of the hamiltonain H =

∑
j Hj .

e−iHt = lim
n→∞

(∏
j

e−iHjt/n
)n

(1)

While accurate for large Trotter order and small step size,
this results in circuits that are too long to be feasibly
run on NISQ devices. A potential use for VQE as well
as the technique described in this paper is to compress
a variable length Trotter evolution into a fixed length
circuit. In that case, more Trotter steps could be applied
to the compressed state without reaching a problematic
circuit depth.

In this paper, we will go through the mathematics of
RL and see how it can be applied to preparing quantum
states of a few qubits. With the groundwork laid, we
will see how this technique can be applied to Trotter
compression.

II. MARKOV DECISION PROCESSES

The machinery behind RL as a whole lies in Markov
Decision Processes (MDPs) [10]. MDPs are represented
as a four-tuple, (S,A,P,R). At discrete time steps t, an

2

agent finds itself in a state st ∈ S, where S is the set of
all reachable states. In this state, the agent can choose
to take an action at ∈ A, where A is the set of possible
actions (potentially for that given state). Taking an
action at in state st causes the agent to transition to state
st+1 with probability P(st+1|st, at). An environment that
follows this transition probability rule is said to have the
Markov property ; that is, previous states and actions have
no effect in determining st+1 (and rt+1). The reward
rt ∈ R, is given to the agent after transitioning from st
to st+1, R(st+1).

In general, the goal of the agent in a MDP is to maxi-
mize the rewards it earns in the long run. This cumula-
tive reward is defined as the expected discounted reward
Gt =

∑∞
k=0 γ

kRt+k+1, where γ ∈ [0, 1]. Discounting the
future reward by increasing γ makes the agent think more
about the long-term effects of its actions instead of choos-
ing actions that always result in the largest immediate
reward rt+1. More specifically, the agent wants to discover
the optimal policy π∗(at = a|st = s) that maximizes the
value function Vπ(s) = Eπ[Gt|st = s]. We consider the
policy to be optimal if V∗(s) ≥ Vπ(s) ∀s ∈ S and policies
π.

This value function can take a recursive form that
allows it to be used in reinforcement learning and dynamic
programming. In this form it is known as the Bellman
equation for Vπ. Note: the expectation value for a random
variable X is defined as E(X) =

∑
X · Pr(X).

Vπ(s) = Eπ
[
Gt

∣∣∣st = s
]

= Eπ
[∞∑
k=0

γkRt+k+1

∣∣∣st = s
]

= Eπ
[
Rt+1 + γ

∞∑
k=0

γkRt+k+2

∣∣∣st = s
]

= Eπ
[
Rt+1

]
+ γEπ

[∞∑
k=0

γkRt+k+2

∣∣∣st = s
]

=
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)R(s′, s, a) +

γ
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)Vπ(s′)

=
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)
(
R(s′, s, a) + γVπ(s′)

)
(2)

In this form, it is easy to see that the value function
is indeed just an expectation value; the probability
of a state transition occurring is multiplied with the
immediate reward plus the discounted value of state
s′. Summing over all possible state transitions gives
Vπ(s). We can similarly define the action-value func-
tion Qπ(s, a) = Eπ[Gt|st = s, at = a] which describes
the value of taking action a in state s. If P(s′, r|s, a) is
known ∀s, a, then a system of |S| with |S| variables can be
solved to determine Vπ(s). However, as the size of state
spaces grow, this becomes computationally infeasible. So

we turn to iterative policy evaluation, an algorithm that
uses the Bellman equation to update Vπ(s) and eventually
converge as k → ∞. It is important to note that this
algorithm does not determine the optimal policy π∗, it
just determines the value of each state with respect to
the current policy.

Vk+1(s) = E[Rt+1 + γVk(st+1|st = s)]

=
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)
(
R(s′, s, a) + γVk(s′)

)
(3)

An example of the policy evaluation algorithm is shown
in Fig. 2. Policy evaluation does not give us any insight
into the changes that we should make to the current
policy in order to maximize Vπ(s) ∀s ∈ S and policies π.
The question to ask is then would it be better to choose
a different action a 6= π(s) for some state s. Formally,
this is asking whether Qπ(s, π′(s)) ≥ Vπ(s) for policies π
and π′, where π′ is an updated policy. If this previous
statement holds, then the policy improvement theorem
says that Vπ′(s) ≥ Vπ(s) ∀s ∈ S; that is, the policy π′

is equal, or better than, π. This process is called policy
improvement and is described below

π′(s) = argmaxaQπ(s, a)

= argmaxaEπ[Rt+1 + γVπ(st+1)|st = s, at = a]

= argmaxa
∑
s′,r

P(s′, r|s, a)
(
R(s′, s, a) + γVπ(s′)

)
(4)

Here argmaxa describes the action for which Qπ(s, a)
is at its maximum. By looping over all states and ac-
tions and greedily selecting the action that maximizes
the action-value function in the short run, we ensure that
the policy improvement theorem is satisfied. We alter-
nate iterative policy evaluation and policy improvement
in an algorithm called policy iteration in order to find
the optimal policy. We continue alternating these two
steps until |Vk+1(s) − Vk(s)| < ε for some ε > 0 and
π′(s) = π(s) ∀s ∈ S. When this occurs, we know that
Vk+1(s) = V∗(s) and π′(s) = π∗(s).

To apply this framework in the context of the dynamics
of a single qubit, certain thought has to be given to ensure
that we can use policy evaluation and policy iteration to
determine the optimal policy. By carefully defining the
MDP four-tuple, (S,A,P,R), we will see that finding
optimal gate sequences to approximate a goal state can
be modeled and solved as a MDP [11].

III. SINGLE-QUBIT DYNAMICS

A. MDP Specification

Pure single-qubit states are continuous in C2, and while
there are methods of dealing with continuous state spaces
in MDPs, we choose to discretize the state space instead.

3

There is a one-to-one mapping from C2 to R3, where
the points in R3 are commonly represented by the Bloch
sphere. For any pure single-qubit state |Ψ〉 = a|0〉+ b|1〉,
where a, b are complex coefficients satisfying |a|2+|b|2 = 1,
we can represent the same state as

|Ψ〉 = cos
(θ

2

)
|0〉+ eiφ sin

(θ
2

)
|1〉 (5)

where 0 ≤ θ ≤ π and −π ≤ φ ≤ π. Thus we only need
two real numbers to completely and uniquely describe a
pure single-qubit state. For any arbitrary a, b that make
up a quantum state(vector), it is simple to determine the
corresponding θ, φ. With a and b in polar form, factor out
a’s phase so that a is entirely real. Then θ = 2 · arccos(a)
and φ = arctan(bimag/breal), the complex argument of b.
To discretize the state space, we break up θ and φ into
intervals with lengths of ε = π/k, where k is some integer.
The state space S is then made up of ∼ 2k2 states that
are discretized as nε < θ ≤ (n + 1)ε, 0 ≤ n ≤ k and
(m − k)ε < φ ≤ (m − k + 1)ε, 0 ≤ m ≤ 2k. We also
distinguish the two poles as distinct states; that is, a
qubit is in |0〉 when θ < ε, regardless of φ. Similarly, a
qubit is in the |1〉 state when θ < π− ε, independent of φ.

For the action space A, we choose a number of non-
parameterized unitaries that can be applied to a single
qubit. Parameterized gates such as RX(θ) and RY (θ)
are defined by the continuous variable θ. There are also
ways to deal with continuous action spaces in MDPs, such
as discretizing the parameter, but we choose the discrete
set {H, T, I} for ease of computation.

H =
1√
2

(
1 1
1 −1

)
T =

(
1 0
0 eiπ/4

)
I =

(
1 0
0 1

)
(6)

FIG. 1. Rotations Rn̂(α) caused by (HT)n|0〉.

Since we are finding π∗ using policy iteration, we must
know P, P(s′, r|s, a) ∀s, a. In general, it is not the case
that you know the exact dynamics of the system, but in
this case the it is easy to simulate the environment and
to create a probability distribution. Applying unitaries to

a quantum state is a deterministic action, but applying a
string of unitaries is not a Markovian process. For a single-
qubit system to have the Markov property, i.e. only the
current state and action determine the next state, we have
to ‘shuffle’ the qubit statevector within the current MDP
state before applying an action. Since we discretized the
state space, applying a unitary to a qubit in an arbitrary
state s—by choosing some k,m, n—can result in a variety
of next states s′. So to find P(s′, r|s, a), all we have to
do is randomly choose a number of s ∈ S, apply each
action (unitary) to the state and record which state it
ends up in. If we sample enough random qubit states,
we can create an adequate probability distribution that
allows value and policy iteration to converge to π∗.

The last piece of the MDP to define is the reward
structure R. One measure of accuracy that represents
the closeness of two quantum states |Ψ〉, |Φ〉 is the fidelity
|〈Ψ|Φ〉|2. While an intuitive choice, it is expensive to
calculate on real devices, and it is overkill for our MDP.
We opt to use the simple reward function R(s) = 0 if s is
the goal state, and R(s) = −1 for all other states. This
means that V∗(s) = 0 for the goal state, and V∗(s) < 0
for all other states.

B. Optimal Quantum Circuits

With the MDP defined in the previous section, we can
specify the goal state and available gateset and perform
policy iteration to find the optimal policy. In this case,
this would be the shortest quantum circuit that accurately
approximates the goal state. We target the state (HT)n|0〉
for some n > 0. This circuit results in a rotation of
the Bloch sphere about an axis ~n = (cos π8 , sin

π
8 , cos π8)

through an angle θ = cos2 π8 as shown in Fig. 1. This angle
θ is irrational, so (HT)n 6= (HT)m, ∀m,n. Interestingly,
this circuit can be used to approximate any single qubit
unitary operator [2]. After running policy iteration until
convergence, we use the following algorithm to find the
optimal gate sequence: Start in a random quantum state
within the |0〉MDP state. Then follow the actions given by
π∗ until we reach the goal region. In case this process does
not converge to the goal region, we shuffle intermediate
quantum states within their respective MDP states until
convergence. In Table. I we investigate n up to 1010 and
find that it accurately recreates the goal state in far fewer
gates. The fidelity of the recreation is constrained by
the discretization size we specified in Sec. III A, but in
most cases we find the MDP to find the goal state to be
approximated almost perfectly. This approximation could
be improved even further by increasing k, which would
effectively increase the minimum fidelity between any two
random quantum states within one MDP state.

We apply the same process to recreating random single
qubit states generated by random unitaries applied to the
|0〉 state [12]. We find that an average fidelity |〈ψg|ψf 〉|2
of 0.997 is able to be reached using a sequence of 8.64
gates from our gateset. For some cases, applying the

4

FIG. 2. Policy evaluation for π∗ when targeting (HT)n|0〉, n = 102. (a) Policy evaluation after k = 1 iteration. The highlighted
state is the goal state with a value of 0; all other states have values around -1. The brighter the color of the state, the higher its
value is and the more advantageous it is to be in that state under the current policy. (b) Policy evaluation after k = 5 iterations.
By now, states from which the goal state is reachable in a few action have an increased value. (c) Policy evaluation after k = 62
evaluations. Here the algorithm has converged to V∗.

sequences to the pure |0〉 state was unable to reach the
goal region, so in those situations a random quantum
state within |0〉 MDP state was chosen.

n Gate sequence |〈ψg|ψf 〉|2

102 HTHTH 0.992

103 HTH 0.988

104 HTH 0.992

105 HTH 0.995

106 HTTHT 0.998

107 HTHTHTHTTTH 0.990

108 I 0.999

109 I 0.996

1010 HTHTHTH 0.972

TABLE I. Optimal gate sequences to prepare (HT)n|0〉. Gate
sequences are applied from right to left. The fidelity |〈ψg|ψf 〉|2
is found by applying the gate sequence to |0〉, as opposed to a
random state in the northern pole.

IV. MULTI-QUBIT DYNAMICS

While this methodology works well for the single-qubit
case, scaling up to multiple qubits is difficult. For one,
there is no Bloch sphere representation for more than one
qubit, so we must find another way to parameterize the
Hilbert space. One idea is to represent the state space as
the group of SU(N) matrices, the special unitary group.
SU(N) is the group of N ×N unitary matrices U with
det U = 1.

It is possible to parameterize SU(N). In general, the
number of parameters is polynomial in N ; that is, N2− 1
matrices are needed to form a basis for SU(N), and each

of these matrices has a corresponding parameter. Each
of the N2 − 1 parameters is between 0 and π, but many
are bounded above by a factor of π. If we impose a dis-

cretization of size ε = π/k, then we have kN
2−1 as an

upper bound on the number of MDP states. Even for
the two qubit case, SU(4), |S| ≈ k15, an unmanageable
number of states for which to create transition matrices
and solve using policy iteration. Another option when
designing the state space is to represent the density ma-
trix or unitary U ∈ SU(N) as two matrices containing
the real and imaginary parts. While in this method the
matrix scales exponentially with the number of qubits, it
is straightforward to implement and feasible for a small
number of qubits. As such, we will focus on this latter
representation as we look at learning multi-qubit dynam-
ics. With this state space, there are again too many states
to apply policy iteration; however, we have approximate
solution methods that allow us to learn the optimal policy
for a MDP.

A. Proximal Policy Optimization

As state and action spaces get larger, it becomes in-
feasible or impossible to know and store the information
needed to know the transition probabilities. Because of
this, tabular methods such as policy iteration become
unusable. This means that we no longer have the ability
to query a simply array to find π∗ for a given state. How-
ever, generalization methods exist that allow us to create
function approximations of the value or action-value func-
tions. For a set of parameters θ ∈ Rd, the policy function
now becomes π(a|s, θ) = P{at = a|st = s, θt = θ}. These
parameters can parameterize an arbitrary function, like a
simple linear regressor or a more complex model such as
a convolutional neural network (CNN). We will focus on
applying the latter to the problem of multi-qubit state

5

FIG. 3. Circuit that includes entanglement for testing PPO.

preparation. We can apply Proximal Policy Optimization
(PPO) to approximate the value function and inform the
agent of the best action to take in a given state. This
algorithm is implemented in the Gym package for Python,
so we can create an environment to represent the action
of gates on qubits and train an agent. Other packages
such as Qiskit or Pyquil can be used for this purpose, but
we chose to write our own quantum simulator that does
the matrix multiplication. A difference from the single
qubit MDP is the specification of the reward function; in
the multi-qubit case, there is no goal state for the agent
to enter into. So we exchange the reward function for
simply the fidelity of the goal state and the state the
agent is currently in, |〈ψg|ψf 〉|2. We use the same gate
set as before on each qubit, but we also include a CNOT
gate between each pair of qubits.

We test the method on three example circuits to recre-
ate. The first circuit we test is the Bell state for n qubits.
This can be implemented in only n gates—a Hadamard
on the first qubit and CNOTs between it and the rest. As
such, the agent can easily find the correct circuit for 2, 3,
and 4 qubits. A slightly more complicated test is the cir-
cuit [(HT)m]⊗n. This is essentially the same problem as
the single-qubit case, but done in parallel for each qubit.
After running the PPO algorithm for 100,000 time steps,
we find that the agent can recreate a state with ≥ 0.80

fidelity with the goal circuit for all m tested. Finally, we
look at the circuit depicted in Fig. 3. This is similar to
the circuit in the second example, but we add a CNOT to
introduce entanglement between the two qubits. Adding
this entanglement appears to substantially increase the
difficulty of the problem, as the agent was unable to recre-
ate any state with a fidelity much higher than 0.50 unless
the solution was trivial. These tests were only for the
two qubit case, so extending the investigation further to
include three or four qubits aims to yield even poorer
results.

V. CONCLUSION

In this report we have looked at the feasibility of using
RL as a way to recreate arbitrary quantum states and
compress them into shorter circuits. Using the machinery
of MDPs, we saw that a simple model can accurately
specific circuits as well as random unitaries. As we looked
into multi-qubit dynamics, we found that the PPO al-
gorithm generally has difficult in training an agent to
recreate even semi-complex quantum states. This could
be a limitation of the algorithm itself, or its description
of the problem. For one, the agent might learn better if
it had more information about its environment, such as
entanglement entropy or the closeness of density matrices.
Adding this information to the agent can be a focus of
future work. With these results, we cannot recommend
the use of RL for this task. Other variational methods
such as VQE have been shown to be more robust and
capable for similar uses. This is not to say that RL is
useless in the field of quantum computation; uses such as
controlling hardware [13] have been shown to be practical.
In any case, as we continue developing the the NISQ era,
the more hybrid quantum-classical algorithms we can find,
the better. Find the code from this report here.

[1] J. Preskill, Quantum 2, 79 (2018).
[2] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
2000).

[3] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-
Guzik, New Journal of Physics 18, 023023 (2016).

[4] Y.-X. Yao, N. Gomes, F. Zhang, T. Iadecola, C.-Z. Wang,
K.-M. Ho, and P. P. Orth, “Adaptive variational quantum
dynamics simulations,” (2020), arXiv:2011.00622 [quant-
ph].

[5] D. Wecker, M. B. Hastings, and M. Troyer, Physical
Review A 92 (2015), 10.1103/physreva.92.042303.

[6] R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla,
Y. B. Kim, and H. Yuen, PRX Quantum 1, 020319
(2020).

[7] H. R. Grimsley, S. E. Economou, E. Barnes, and
N. J. Mayhall, Nature Communications 10 (2019),

10.1038/s41467-019-10988-2.
[8] H. L. Tang, V. O. Shkolnikov, G. S. Barron, H. R. Grim-

sley, N. J. Mayhall, E. Barnes, and S. E. Economou,
“qubit-adapt-vqe: An adaptive algorithm for construct-
ing hardware-efficient ansatze on a quantum processor,”
(2020), arXiv:1911.10205 [quant-ph].

[9] A. Bolens and M. Heyl, “Reinforcement learning for digital
quantum simulation,” (2020), arXiv:2006.16269 [quant-
ph].

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, 2nd ed. (The MIT Press, 2018).

[11] M. S. Alam, “Quantum logic gate synthesis as a markov
decision process,” (2019), arXiv:1912.12002 [quant-ph].

[12] F. Mezzadri, (2006), arXiv:math-ph/0609050.
[13] M. Y. Niu, S. Boixo, V. Smelyanskiy, and H. Neven,

“Universal quantum control through deep reinforcement
learning,” (2018), arXiv:1803.01857 [quant-ph].

https://github.com/noahberthusen/circuit_rl
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://arxiv.org/abs/2011.00622
http://arxiv.org/abs/2011.00622
http://dx.doi.org/10.1103/physreva.92.042303
http://dx.doi.org/10.1103/physreva.92.042303
http://dx.doi.org/ 10.1103/PRXQuantum.1.020319
http://dx.doi.org/ 10.1103/PRXQuantum.1.020319
http://dx.doi.org/10.1038/s41467-019-10988-2
http://dx.doi.org/10.1038/s41467-019-10988-2
http://arxiv.org/abs/1911.10205
http://arxiv.org/abs/2006.16269
http://arxiv.org/abs/2006.16269
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://arxiv.org/abs/1912.12002
http://arxiv.org/abs/arXiv:math-ph/0609050
http://arxiv.org/abs/1803.01857

	Efficient quantum circuit compression using Reinforcement Learning
	Abstract
	Introduction
	Markov Decision Processes
	Single-qubit dynamics
	MDP Specification
	Optimal Quantum Circuits

	Multi-Qubit Dynamics
	Proximal Policy Optimization

	Conclusion
	References

