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Introduction

What is VQE?

The Variational Quantum Eigensolver (VQE) is a
quantum/classical hybrid algorithm:

(a) that can be used to find eigenvalues of a (often large) matrix
H.

(b) H is typically the Hamiltonian of some system.

(c) a quantum subroutine is run inside of a classical optimization
loop.



Introduction

VQE is a hybrid quantum/classical algorithm because it works by
variationally determine the ground state energy of the Hamiltonian
of the system by employing a classical as well as a quantum
computer.



Hamiltonian

The Hamiltonian of a system is an operator corresponding to the
total energy of the system. For the purposes of this presentation
we assume that we are able to get the Hamiltonian from a domain
expert. It has the following characteristics:

(a) H is Hermitian

(b) H can be uniquely decomposed into a linear combination of
pauli matrices such that the coefficients are all real.

Example: Hubbard model Hamiltonian

H = −t
∑
<i ,j>

∑
σ

tijc
†
i ,σcj ,σ + U

∑
i

c†i ,↑ci ,↑c
†
i ,↓ci ,↓



Recap of Pauli Matrices

The Pauli Matrices form a basis for the real vector space of 2× 2
Hermitian matrices.

X =

(
0 1
1 0

)

Y =

(
0 −i
i 0

)

Z =

(
1 0
0 −1

)
The Hamiltonian can be decomposed into the linear combination
of Pauli matrices using the Jordan-Wigner scheme or the
Bravi-Kitaev scheme.



Solution plan

The algorithm proceeds in the following stages:

(a) Express the Hamiltonian in computational basis i.e. in terms
of a linear combination of Pauli matrices.

(b) Create a trial wave function(ansatz) of the form
∣∣∣ψ(~θ)

〉
,

where ~θ is a parameter. Initialize ~θ = ~0, randomly, or on the
basis of classical precomputation.

(c) Represent ansatz as a quantum circuit.

(d) Using current parameters (in ansatz), ~θ , repeatedly execute
the circuit, each time performing an individual measurement
of one of the pauli operators in H. After a sufficient number of
circuit executions (shots), the averages of the resulting data
converges to the expectation values of the operators.

(e) Check convergence. If the average energy has decreased by a
small enough value determined to be converged, exit.



Quantum Circuit

Note: Here the Rt gates are rotation operations.



Calculating expectation value

When using a statevector simulator, 〈Ψ|H|Ψ〉 can be calculated by
performing the matrix multiplication.
On a quantum computer we must do the following:

(a) Get quantum register into the state you want to compute the
observable of (Pauli string)

(b) Transform the current basis such that the computational basis
is rotated onto the measurement basis

(c) Measure quantum register in the computational basis

(d) Compute probabilities for each eigenvector from the counts

〈Ψ|H|Ψ〉 =
∑
i

λiPi



The ansatz

In the VQE algorithm, a state
∣∣∣ψ(~θ)

〉
is parametrized by action of

a quantum circuit U(~θ) on an initial state |φ〉. i.e.∣∣∣ψ(~θ)
〉

= U(~θ) |φ〉

The interesting thing about this expression is that even if |φ〉 is a
simple product state and U(~θ) is a shallow quantum circuit,∣∣∣ψ(~θ)

〉
can contain complex many-body interactions.

We can represent U(~θ) as a concatenation of parametrized
quantum gates in the form:

U(~θ) = U1(~θ)U2(~θ)....Un(~θ)



The Ansatz

In fact, forming the ideal ansatz is the most critical aspect of the
VQE algorithm. We will be discussing some standard proposals for
setting up the ansatz later, but formulating the ansatz correctly
and reducing the search space of the parameters is an area of
active research.



The Variational Principle

Theorem

Given ψ, the expectation value of the Hamiltonian represents an
upper bound to the exact ground state energy,i.e.

〈ψ|H |ψ〉 ≥ E0

Proof:

Let |ψ〉 =
∑

α Cα |ψα〉. Therefore,

〈ψ|ψ〉 =

〈∑
β

Cβψβ

∣∣∣∣∣∣
∑
α

Cαψα

〉
=
∑
α,β

C ∗βCα
〈
ψβ
∣∣ψα〉︸ ︷︷ ︸
δαβ

=
∑
α

|Cα|2 = 1



The Variational Principle - Proof Contd.

Using the Schrodinger’s equation Hψ = Eψ,

〈ψ|H |ψ〉 =
∑
α,β

C ∗βCαEα
〈
ψβ
∣∣ψα〉 =

∑
α

Eα|Cα|2

But Eα ≥ E0,

=⇒ 〈ψ|H |ψ〉 ≥
∑
α

E0|Cα|2 = E0 ≥
∑
α

|Cα|2 = E0

Note: ψ is normalized =⇒ 〈ψ|ψ〉 = 1



Expectation of Hamiltonian (Energy) calculation

In fact, forming the ideal ansatz is the most critical aspect of the
VQE algorithm. We will be discussing some standard proposals for
setting up the ansatz later, but formulating the ansatz correctly
and reducing the search space of the parameters is an area of
active research. Given an ansatz, the expectation of Hamiltonian
(Energy) is given by:

E (~θ0) =
〈
ψ(~θ0)

∣∣∣H ∣∣∣ψ(~θ0)
〉
≥ E0

Note: In the beginning, θ0 is initialized to a certain value and an
ansatz is created. After the first round of energy calculation,
subsequent θk , k ≥ 1 are proposed by the classical optimizer.



Expectation of terms in Hamiltonian by ~θ



Choice of ~θ

(a) len(~θ) ≤ O(poly(N)) i.e. the number of parameters stays
small as the system grows.

(b) U(~θ) needs a decomposition into at most a number of
quantum operations that is polynomial in N.

Note: Here N × N is the size of the Hamiltonian.



Choice of Ansatz

(a) UCC

(b) Hamiltonian variational

(c) ADAPT-VQE



UCC

Inspired by quantum chemistry, the variational state is prepared
using a unitary evolution under a sum of fermionic terms.

|ΨT 〉 = eT |ΨI 〉

where

T =
∑
p<q

(Tpqc
†
pcq − H.c .) +

∑
p<q,r<s

(Tpqrsc
†c†qcrcs − H.c.)

Often, eT is implemented using a Trotter-Suzuki method for a
small number of Trotter steps.

e(A+B) = limn→∞

(
e

A
n e

B
n

)n



Hamiltonian variational

The Hamiltonian variational ansatz sets out to resolve the issues of
UCC. Building the variational state using rotations by terms in the
Hamiltonian reduces ansatz circuit depth.

|ΨT 〉 =
S∏

b=1

[
Uu

(Θb
U

2

)
Uh(Θb

h)Uv (Θb
v )Uu

(Θb
U

2

)]
|ΨI 〉

Where UX (Θ) approximates e iΘhx for X ∈ {U, h, v} in the
Hamiltonian. We again use Trotterization, but only for Uh.
The choice of ΨI is also important and is often a Slater
determinant or the Hartree Fock state.



ADAPT-VQE

The key idea is to systematically grow the ansatz by adding
fermionic operators one-at-a-time, such that the maximal amount
of correlation energy is recovered at each step.

|ΨADAPT (ε)〉 = (e τ̂N )(e τ̂N−1)...(e τ̂2)(e τ̂1)|ΨHF 〉

where τ̂i comes from a pool of one and two (and possibly three
and four) body operators.
Selecting which operator goes in the ansatz is done by computing
the gradient for each operator in the pool and taking the largest.

∂E (n)

∂ΘN
= 〈Ψ(n)|[ĤÂN ]|Ψ(n)〉



Notes on Optimization

Quoting the authors from the original VQE paper: ”For the classical

optimization step of our integrated processor we implemented the Nelder–Mead

(NM) algorithm, Although in general NM can fail because of the deterioration

of the simplex geometry or lack of sufficient decrease, the convergence of this

method can be greatly improved by adopting a restarting strategy. Although

other DS methods, such as the gradient descent, can perform better for

smooth functions, these are not robust to the noise, which makes the objective

function non-smooth under experimental conditions. NM has the ability to

explore neighbouring valleys with better local optima, and likewise this

exploring feature usually allows NM to overcome non-smoothnesses. We

verified that the gradient descent minimization algorithm is not able to

converge to the ground state of our Hamiltonian under the experimental

conditions, mainly due to the Poissonian noise associated with our photon

source and the accidental counts of the detection system, while NM converged

to the global minimum in most optimization runs.”



Nelder-Mead Optimizer

(a) Initialize with a random start point.

(b) Construct a set of vertex points, evaluate the function value
at each of these points and finally rank them from best
(lowest function value) to worst.

(c) Find the centroid of all points leaving aside the worst.

(d) Use the centroid to calculate a new reflection point.

(e) Depending on new value of the function at this point, we
either perform an expansion or contraction operation to move
towards the minima.



Nelder-Mead Optimizer

Click for Demo of Nelder Mead

https://www.youtube.com/watch?v=HUqLxHfxWqU


The closed loop optimization process

The following diagramatic representation outlines the closed loop
process that runs between the optimizer and the quantum
computer.



Advantages of VQE

(a) VQE seeks to find optimal parameters in a fashion that is
blind to control errors (some hardware stuff).

(b) VQE is robust due to adaptive nature of the algorithm.

(c) Compared to PEA, VQE achieves better Chemical Accuracy
at low cost.


